modynamics of the return electron transfer. An excellent correlation is observed in the present work presumably because, unlike previous work, the compounds studied are similar in structure and dimensions and do not undergo significant chemical reactions either within or outside the geminate radical pair and because accurate redox parameters were obtained.

Rhodium μ-Amido and μ-Imido A-Frame Complexes: Tautomeric Equilibria with a Deprotonated Bis(diphenylphosphino)methane Ligand ${ }^{1}$

Paul R. Sharp* and Yuan-Wen Ge

Department of Chemistry University of Missouri-Columbia Columbia, Missouri 65211

Received February 27, 1987
Molecular A-frame complexes ${ }^{2}$ are one of the larger classes of bimetallic late-transition-metal complexes. While a large number of apex ligands have been incorporated, apex oxo, imido, and amido ligands are unknown. 3,4 The majority of A-frame complexes are based on the bis(diphenylphosphino)methane (dppm) ligand and usually contain the metals $\mathrm{Pt}, \mathrm{Pd}, \mathrm{Rh}$, or Ir. ${ }^{3.4 \mathrm{a}}$ Since we are interested in preparing μ-oxo and μ-imido complexes of these metals as models for late-transition-metal surface oxides, we began working on expanding the A-frame class to include complexes with these apex ligands. ${ }^{1}$ During this work we discovered the first examples of A-frame complexes containing a deprotonated dppm (bis(diphenylphosphino)methanide or dppmH) ligand and at least two examples where the dppm ligand is involved in a unique tautomeric equilibrium. Although dppm- H ligands have been previously observed, the complexes have been monomers, ${ }^{5}$ dimers with non-A-frame structures, ${ }^{6}$ or clusters. ${ }^{7}$ Our results show that the dppm-H ligand can support the A-frame structure. In addition, we have the first examples of A-frame complexes with bridging amido and imido ligands.
(1) Part 2 in a series entitled "Late-Transition-Metal μ-Oxo and μ-Imido Complexes". For part 1, see: Sharp, P. R.; Flynn, J. R. Inorg. Chem., in press.
(2) Kubiak, C. P.; Eisenberg, R. J. Am. Chem. Soc. 1977, 99, 6129-6131; Inorg. Chem. 1980, 19, 2726-2732.
(3) Puddephatt, R. J. Chem. Soc. Rev. 1983, 12, 99-128.
(4) (a) Balch, A. L. In Catalytic Aspects of Metal Phosphine Complexes; Alyea, E. C., Meek, D. W., Ed.; American Chemical Society: Washington, DC, 1982; Adv. Chem. Ser. 1982, No. 196, 243-255. (b) Jandik, P.; Schubert, U.; Schmidbaur, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 72; Angew. Chem. Suppl. 1982, 1-12. (c) Murray, H. H.; Fackler, J. P., Jr.; Mazany, A. M. Organometallics 1984, 3, 1310-1311. Knachel, H. C.; Dudis, D. S.; Fackler, J. P., Jr. Ibid. 1312-1313. Murray, H. H.; Mazany, A. M.; Fackler, J. P., Jr. Ibid. 1985, 4, 154-157.
(5) (a) Bassett, J.-M.; Mandl, J. R.; Schmidbaur, H. Chem. Ber. 1980, 113, 1145-1152. (b) Browning, J.; Bushnell, G. W.; Dixon, K. R. J. Organomet. Chem. 1980, 198, C11. (c) Brown, M. B.; Yavari, A.; ManojlovicMuir, L.; Muir, K. W.; Moulding, R. J.; Seddon, K. R. J. Organomet. Chem. 1982, 236, C33-C36. (d) Al Jibori, S.; Shaw, B. L. Inorg. Chim. Acta 1983, 74, 235-239.
(6) (a) Dawkins, G. M.; Green, M.; Jeffery, J. C.; Stone, F. G. A. J. Chem. Soc., Chem. Commun. 1980, 1120 . (b) Briant, C. E.; Hall, K. P.; Mingos, D. M. P. J. Organomet. Chem. 1982, 229, C5-C8. (c) Brown, M. B.; Yavari, A.; Manojlovic-Muir, L; Muir, K. W. J. Organomet. Chem. 1983, 256, C19-C22.
(7) (a) Camus, A.; Marsich, N.; Nardin, G.; Randaccio, L. J. Organomet. Chem. 1973, 60, C39-C42. (b) van der Velden, J. W. A.; Bour, J. J.; Vollenbrock, F. A.; Beurskens, P. T.; Smits, J. M. M. J. Chem. Soc., Chem. Commun. 1979, 1162-1163. (c) Uson, R.; Laguna, A.; Laguna, M.; Gemeno, M. C.; Jones, P. G.; Fittschen, C.; Sheldrick, G. M. J. Chem. Soc., Chem. Commun. 1986, 506-510.

Figure 1. ORTEP view of $\mathrm{Rh}_{2}(\mu-\mathrm{NHMe})(\mathrm{CO})_{2}(\mu-\mathrm{dppm})(\mu-\mathrm{dppm}-\mathrm{H})$ (1a) 50% probability ellipsoids. Phenyl rings are omitted for clarity. Selected distances (\AA) and angles (deg): P1-C3, 1.738 (8); P2-C3, 1.736 (8); P3-C4, 1.837 (7); P4-C4, 1.851 (7); C3-H1, 0.80 (9); Rh1-N, 2.107 (6); Rh2-N, 2.091 (5); N-HN, 1.09 (9); HN-C3, 2.23; P1-C3-P2, 119.3 (4); P1-C3-H1, 119 (7); P2-C3-H1, 115 (7); Rh1-N-Rh2, 94.4 (2); $\mathrm{Rh}^{2} \mathrm{~N}-\mathrm{CME}, 121.0$ (5); Rh2-N-CME, 127.5 (5); RH1-N-HN, 116 (4); Rh2-N-HN, 103 (4); CME-N-HN, 96 (4); N-HN-C3, 128 (4).

Treating yellow $\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{2}(\mu \text {-dppm })_{2}{ }^{8}$ with 2 equiv of LiNHR in ether gives a single orange product (1a) when $\mathrm{R}=$ Me (eq 1). Spectroscopic ${ }^{9}$ and X-ray ${ }^{11}$ data show 1a to be a

$$
\begin{array}{r}
\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{2}(\mu-\mathrm{dppm})_{2}+2 \mathrm{LiNHR} \xrightarrow{-2 \mathrm{LiCl}} \\
\mathrm{Rh}_{2}(\mu-\mathrm{NHR})(\mathrm{CO})_{2}(\mu-\mathrm{dppm})(\mu-\mathrm{dppm}-\mathrm{H})+ \\
\mathbf{1 a}, \mathrm{R}=\mathrm{Me} \\
\mathbf{1 b}, \mathrm{R}=\mathrm{Ph} \\
\mathbf{1 c}, \mathrm{R}=p-\mathrm{MePh} \\
\mathrm{R} \mathrm{~h}_{2}(\mu-\mathrm{NR})(\mathrm{CO})_{2}(\mu-\mathrm{dppm})_{2}(1) \\
\mathbf{2 b}, \mathrm{R}=\mathrm{Ph} \\
\mathbf{2 c}, \mathrm{R}=p-\mathrm{MePh}
\end{array}
$$

μ-methylamido A-frame complex with a dppm-H ligand. A view of the molecular structure is shown in Figure 1.

When $\mathrm{R}=\mathrm{Ph}$ or p-MePh a mixture of two products (eq $1, \mathbf{1 b}$ and $\mathbf{2 b}$ for $\mathrm{R}=\mathrm{Ph}, \mathbf{1} \mathbf{c}$ and $\mathbf{2 c}$ for $\mathrm{R}=\mathrm{p}-\mathrm{MePh}$) is obtained as shown by IR. ${ }^{12}$ Experiments on the slower NMR time scale show that the two products are in rapid equilibrium, a slow exchange

[^0]
Scheme I

($\mathbf{a}, \mathrm{R}=\mathrm{Me} ; \mathrm{b}, \mathrm{R}=\mathrm{Ph}: \mathrm{c}, \mathrm{R}=\mathrm{p}$-MePh)
spectrum only being obtained at $-80^{\circ} \mathrm{C}\left(\mathrm{R}=p-\mathrm{MePh}, \Delta G^{\ddagger} \sim\right.$ $40 \mathrm{~kJ} / \mathrm{mol}){ }^{12}$ A structure similar to $\mathbf{1 a}$ is assigned to $\mathbf{1 b}, \mathbf{c}$ based on the similarity of the spectroscopic data. The spectroscopic data for $\mathbf{2 b}, \mathbf{c}$ are very similar to the data for $\mathrm{Rh}_{2}(\mu-\mathrm{S})(\mathrm{CO})_{2}(\mu-\mathrm{dppm})_{2}{ }^{2}$ and $\mathrm{Rh}_{2}(\mu-\mathrm{O})(\mathrm{CO})_{2}(\mu-\mathrm{dppm})_{2} \cdot \mathrm{LiBF}_{4} \cdot{ }^{1}$ We therefore formulate these products as the imido complexes $\mathrm{Rh}_{2}(\mu-\mathrm{NR})(\mathrm{CO})_{2}(\mu-$ $\mathrm{dppm})_{2}, \mathbf{2 b}(\mathrm{R}=\mathrm{Ph})$ and $\mathbf{2 c}(\mathrm{R}=p-\mathrm{MePh})$. Thus, $\mathbf{1}$ and $\mathbf{2}$ are tautomers in a tautomeric equilibrium (Scheme I). ${ }^{13}$ Although 1a is apparently not in equilibrium with its tautomer, at least on the NMR time scale (NMR spectra are invariant from -60 to $100^{\circ} \mathrm{C}$), the structure of 1 a does show how well the hydrogen (HN) is positioned for the shift needed to interconvert the tautomers (Figure 1). Indeed, HN is within hydrogen bonding distance of the methanide carbon, C3.

A likely reaction pathway for the formation of $\mathbf{1}$ and $\mathbf{2}$ is shown in Scheme I. Protonation of $\mathbf{1 a}$ or the equilibrium mixtures $\mathbf{1 b} / \mathbf{2 b}$ or $\mathbf{1 c} / \mathbf{2 c}$ gives the proposed intermediate, $\mathbf{3 a}, \mathbf{3 b}$, or $\mathbf{3 c}{ }^{14}$ (eq 2). The protonation is reversed upon addition of LiNHR.
$\mathbf{1 a}$ or $\mathbf{1 b} / \mathbf{2 b}$ or $\mathbf{1 c} / \mathbf{2 c} \underset{\underset{\text { LiNHR }}{ }}{\mathrm{H}^{+}}$

$$
\begin{gather*}
{\left[\mathrm{Rh}_{2}(\mu-\mathrm{NHR})(\mathrm{CO})_{2}(\mu-\mathrm{dppm})_{2}\right]^{+}} \tag{2}\\
3 \mathbf{a}, \mathrm{R}=\mathrm{Me} \\
3 \mathrm{~b}, \mathrm{R}=\mathrm{Ph} \\
3 \mathbf{c}, \mathrm{R}=p-\mathrm{MePh}
\end{gather*}
$$

[^1]In contrast to $3 \mathrm{a}-\mathrm{c}$ the isoelectronic complexes $\left[\mathrm{M}_{2}(\mu-\mathrm{OH})\right.$ $\left.(\mathrm{CO})_{2}(\mu \text {-dppm })_{2}\right]^{+}\left(\mathrm{M}=\mathrm{Rh}^{15}\right.$ and $\left.\mathrm{Ir}^{16}\right)$ are deprotonated solely at the bridging OH ligand and not at a dppm ligand. ${ }^{1}$ While this may be due solely to the difference in acidity of the OH and NHR protons, the incorporation of Li^{+}into the OH deprotonation product, $\mathrm{M}_{2}(\mu-\mathrm{O})(\mathrm{CO})_{2}(\mu \text {-dppm })_{2} \cdot \mathrm{LiBF}_{4}$ (most likely by coordination to the μ-oxo ligand), complicates comparisons. The presence of the imido complex when $\mathrm{R}=\mathrm{Ph}(2 \mathrm{~b})$ or $p-\mathrm{MePh}$ (2c) but not when $\mathrm{R}=$ Me reflects the greater acidity of the amido group in 3b and $\mathbf{3 c}$ on replacing the methyl group in 3a with electron-withdrawing phenyl groups. This effect is further illustrated by the ratio of the tautomers (IR, $22^{\circ} \mathrm{C}$) which increases on going from $\mathrm{R}=\mathrm{Ph}(\mathbf{1 b}: \mathbf{2 b} \sim 1: 3)$ to less electron withdrawing $\mathrm{R}=p-\mathrm{MePh}(\mathbf{1 c}: \mathbf{2 c} \sim 1: 1)$.
Preliminary work on the reaction chemistry of $\mathbf{1}$ and $\mathbf{2}$ shows facile insertion of CO into the $\mathrm{Rh}-\mathrm{N}$ bond. Details of this work will be reported in a forthcoming publication.

Acknowledgment. We acknowledge the donors of the Petroleum Research Fund, administered by the American Chemical Society, the Research Corporation, and the UMC Research Council for support of this work and Johnson Matthey for a loan of RhCl_{3}. The National Science Foundation provided a portion of the funds for the purchase of the x-ray (CHE-7820347) and NMR (PCM8115599) equipment. We thank G. Wei and Dr. R. Taylor for some of the NMR experiments.

Supplementary Material Available: Tables of fractional coordinates and thermal parameters (9 pages). Ordering information is given on any current masthead page.
(15) Deraniyagala, S. P.; Grundy, K. R. Inorg. Chem. 1985, 24, 50-56.
(16) Sutherland, B. R.; Cowie, M. Organometallics 1985, 4, 1637-1648.

In Situ Intercalative Polymerization of Pyrrole in FeOCl: A New Class of Layered, Conducting Polymer-Inorganic Hybrid Materials

M. G. Kanatzidis, L. M. Tonge, and T. J. Marks*
Department of Chemistry and the Materials Research Center Northwestern University, Evanston, Illinois 60201

H. O. Marcy and C. R. Kannewurf

Department of Electrical Engineering and Computer Science and the Materials Research Center
 Northwestern University, Evanston, Illinois 60201

Received February 27, 1987
Prepared by the chemical or electrochemical oxidation of pyrrole, polypyrrole ($\left[(\mathrm{Ppy})^{+y}\left(\mathrm{X}^{-}\right)_{y}\right]_{n}, \mathrm{X}=\mathrm{ClO}_{4}^{-}, \mathrm{BF}_{4}^{-}, \mathrm{NO}_{3}^{-}$, etc. $)^{1}$ is one of the most robust and chemically flexible members of the current generation of electrically conductive polymers. ${ }^{2}$ In addition, substantial property modifications can be achieved via "alloying" with other polymers. ${ }^{1.3}$ However, despite an extensive
(1) (a) Diaz, A. F.; Bargon, J. In Handbook of Conducting Polymers; Skotheim, T. A., Ed.; Marcel Dekker: New York, 1986; Vol. 1, pp 81-115. (b) Street, G. B. Ibid.; pp 265-291. (c) Burgmayer, P.; Murray, R. W. Ibid.; pp 507-523. (d) Pfluger, P.; Weiser, G.; Scott, J. C.; Street, G. B. Ibid.; Vol. 2, pp 1369-1381. (e) Waltman, R. J.; Bargon, J. Can. J. Chem. 1986, 64, 76-95. (f) Wynne, K. J.; Street, G. B. Macromolecules 1985, 18, 2361-2368. (g) Diaz, A. F.; Kanazawa, K. K. In Extended Linear Chain Compounds; Miller, J. S., Ed.; Plenum: New York, 1982; Vol. 3, pp 417-441.
(2) (a) Marks, T. J. Science (Washington, D.C.) 1985, 227, 881-889. (b) Greene, R. L.; Street, G. B. Science (Washington, D.C.) 1984, 226, 651-656. (c) Wynne, K. J.; Street, G. B. Ind. Eng. Chem. Prod. Res. Dev. 1982, 21, 23-28. (d) Baughman, R. H.; Brēdas, J. L.; Chance, R. R.; Elsenbaumer, R. L.; Shacklette, L. W. Chem. Rev. 1982, 82, 209-222. (e) Duke, C. B.; Gibson, H. W. In Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed.; Wiley: New York, 1982; Vol. 18, pp 755-793.

[^0]: (8) Prepared by a modified procedure of: Mague, J. T. Inorg. Chem. 1969, 8, 1975. Mague, J. T.; Mitchener, J. P. Ibid. 1969, 8, 119 as given in ref 2.
 (9) Data for 1a. Anal. Calcd (found) for $\mathrm{Rh}_{2} \mathrm{P}_{4} \mathrm{NO}_{2} \mathrm{C}_{53} \mathrm{H}_{47}: \mathrm{C}, 60.07$ (59.60); H, $4.47(4.50) ; \mathrm{N}, 1.32(1.08)$. 1R $\left(\mathrm{cm}^{-1}\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1965 \mathrm{~s}$ and 1949 vs (ν_{CO}); (mineral oil) 3137 w (ν_{NH}). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 22^{\circ} \mathrm{C}$) δ $6.8-8.2(\mathrm{~m}, 40, \mathrm{Ph}), 3.58$ and $3.24\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right), 3.39(\mathrm{br} \mathrm{m}, 1, \mathrm{NH}), 2.23(\mathrm{~m}$, 3, NCH_{3}), 1.61 (br m, 1, CH). Assignments were confirmed by ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$ shift correlation experiments. The NCH_{3} peak sharpened and increased in intensity when the NH peak was irradiated. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 10^{\circ} \mathrm{C}\right) \delta$ $193.7(\mathrm{~m}, \mathrm{CO}), 135-127(\mathrm{Ph}), 43.5\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 31.4\left(\mathrm{t}, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}\right.$, $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 9.1\left(\mathrm{t}, J_{\mathrm{CP}}=53.0 \mathrm{~Hz}, \mathrm{PCHP}\right)$. Assignments were confirmed by DEPTH ${ }^{i 0}$ experiments. ${ }^{31}$ P NMR ($121 \mathrm{MHz}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{6} \mathrm{D}_{6}$, external $\mathrm{H}_{3} \mathrm{PO}_{4}$ reference, $22^{\circ} \mathrm{C}$), symmetric $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{XX}^{\prime}$ pattern centered at 24 ppm spanning $18-30 \mathrm{ppm}$. Approximately simulated with the following parameters: $J_{\mathrm{AA}^{\prime}}=J_{\mathrm{BB}^{\prime}}=30 \mathrm{~Hz} ; J_{\mathrm{AB}^{\prime}}=J_{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}=300 \mathrm{~Hz} ; J_{\mathrm{AB}^{\prime}}=J_{\mathrm{A}^{\prime} \mathrm{B}}=12 \mathrm{~Hz} ; J_{\mathrm{AX}}=J_{\mathrm{BX}}$ $=J_{\mathrm{A}^{\prime} \mathrm{X}^{\prime}}=\mathrm{BB}_{\mathrm{B}^{\prime} \mathrm{X}^{\prime}}=80 \mathrm{~Hz} ; J_{\mathrm{AX}^{\prime}}=J_{\mathrm{BX}^{\prime}}=J_{\mathrm{A}^{\prime} \mathrm{X}}=J_{\mathrm{B}^{\prime} \mathrm{X}}=12 \mathrm{~Hz} ; J_{\mathrm{XX}^{\prime}}=0 \mathrm{~Hz}$, $\delta(\mathrm{A})=\delta\left(\mathrm{A}^{\prime}\right)=20 \mathrm{ppm}$; and $\delta(\mathrm{B})=\delta\left(\mathrm{B}^{\prime}\right)=28 \mathrm{ppm}$.
 (10) Doddrell, D. M.; Pegg, D. J.; Bendell, M. R. J. Magn. Reson. 1982, 48, 323-327.
 (11) Crystals from toluene: $\mathrm{Rh}_{2} \mathrm{P}_{4} \mathrm{O}_{2} \mathrm{NC}_{53} \mathrm{H}_{47} \cdot \mathrm{C}_{7} \mathrm{H}_{8}$, $\mathrm{fw}=1151.82, d_{\text {calcd }}$ $=1.30$, triclinic $(P \overline{1}), a=10.459$ (12) $\AA, b=14.348$ (3) $\AA, c=20.867$ (6) $\AA, \alpha=104.96(2)^{\circ}, \beta=101.12(4)^{\circ}, \gamma=93.47(6)^{\circ}, V=2948.3 \AA^{3}$, and $Z=2$. Full-matrix least-squares calculations converged to $R\left(F_{0}\right)=0.050$ and $R_{w}\left(F_{0}\right)=0.081$ for 4075 observations above 2σ. Positions for H 1 and HN (see Figure 1) were refined. Full structural details will be reported in a forthcoming publication.
 (12) $\mathbf{1 b} / \mathbf{2 b}(\mathrm{R}=\mathrm{Ph}) .1 \mathrm{R}\left(\mathrm{cm}^{-1}\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1964 \mathrm{w}, 1942 \mathrm{br} \mathrm{s}, 1929$ vs (ν_{CO}); ν_{NH} for 1 lb was not observed (mineral oil). ${ }^{31} \mathrm{P}$ NMR (121 MHz , $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{6} \mathrm{D}_{6}(2: 1)$, external $\mathrm{H}_{3} \mathrm{PO}_{4}$ reference, $22^{\circ} \mathrm{C}$) $\delta 23.2\left(\mathrm{~d}, J_{\mathrm{RhP}}=145\right.$ $\mathrm{Hz}) .1 \mathrm{c} / \mathbf{2 c}(\mathrm{R}=p-\mathrm{MePh}) .1 \mathrm{R}\left(\mathrm{cm}^{-1}\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1964 \mathrm{~m}, 1945 \mathrm{vs}, 1927 \mathrm{~m}$ (ν_{CO}); (mineral oil) $3138 \mathrm{w}\left(\nu_{\mathrm{NH}}\right) .{ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{6} \mathrm{D}_{6}(2: 1)$, external $\mathrm{H}_{3} \mathrm{PO}_{4}$ reference, $22^{\circ} \mathrm{C}$) $\delta 22.6$ (br d, $J_{\mathrm{RnP}}=138 \mathrm{~Hz}$). At $-80^{\circ} \mathrm{C}$ this peak was resolved into a doublet at $21.9 \mathrm{ppm}\left(J_{\mathrm{RhP}}=136 \mathrm{~Hz}\right)$ for 2 c and a symmetric $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{XX}^{\prime}$ pattern for 1 c centered at 21 ppm and spanning $13-30 \mathrm{ppm}\left(T_{\mathrm{c}}=-68^{\circ} \mathrm{C}\right.$). Approximate ratio of 1 c to 2 c at $-80^{\circ} \mathrm{C}$ was 2:3. Assuming an equal population at $T_{c}, \Delta G^{*} \sim 40 \mathrm{~kJ} / \mathrm{mol}$.

[^1]: (13) A similar tautomeric equilibrium has been postulated to explain the incorporation of deuterium into the dppm methylene groups of $\mathrm{Rh}_{2}(\mu$ -$\mathrm{OHCl})(\mathrm{CO})_{2}(\mu-\mathrm{dppm})_{2}{ }^{15}$
 (14) $3 \mathrm{a}(\mathrm{R}=\mathrm{Me})$. Anal. Calcd (found) for $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{P}_{4} \mathrm{Rh}{ }_{2} \mathrm{~S} \cdot 0.6 \mathrm{C}$ $\mathrm{H}_{2} \mathrm{Cl}_{2}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\right.$salt): $\mathrm{C}, 52.01(51.76) ; \mathrm{H}, 3.93$ (4.07); $\mathrm{N}, 1.11$ (0.84); P , 9.83 (9.82). $1 \mathrm{R}\left(\mathrm{cm}^{-1}\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1993 \mathrm{sh}$ and $1980 \mathrm{vs}(\nu \mathrm{CO})$; (mineral oil) $3290 \mathrm{w}\left(\nu_{\mathrm{NH}}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.94$ (m, 40, phenyl), $5.32\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 4.20$ and $3.54\left(\mathrm{~m}, 2\right.$ and $2, \mathrm{CH}_{2}$), 2.35 ($\mathrm{br} \mathrm{s}, 3, \mathrm{NCH}_{3}$), 2.03 (brs, 1, NH). ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, external $\mathrm{H}_{3} \mathrm{PO}_{4}$ reference) $\delta 21.6$ (unsymmetrical doublet with apparent $J_{\text {RhP }}=117 \mathrm{~Hz}$). 3b (R $=\mathrm{Ph})$. IR $\left(\mathrm{cm}^{-1}\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1995 \mathrm{sh}$ and $1977 \mathrm{vs}\left(\nu_{\mathrm{CO}}\right) ;($ mineral oil) 3218 w (ν_{NH}). ${ }^{31} \mathrm{P} \mathrm{NMR}\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, external $\mathrm{H}_{3} \mathrm{PO}_{4}$ reference) complex pattern centered at 21 ppm . Data for $3 \mathrm{c}(\mathrm{R}=p$ - MePh$)$ are essentially identical.

